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In this paper, we present a new theoretical formulation of ion
conductance in electrolyte solutions. This formulation not only
offers a microscopic derivation of the well-known Debye-
Huckel-Onsager (DHO) limiting law,1,2 but it also allows asimple
interpretation of each term of the DHO law in terms of the time
correlation function of appropriate dynamical variables. It is
further shown that the theory can be successfully applied to higher
ion concentrations. The present theory provides a very powerful
new approach to the study of conductance in electrolyte solutions.

The DHO limiting law is considered to be one of the pillars of
physical chemistry, with implications in many other branches of
natural science. Given the simplicity of this law, its success,
without any adjustable parameter, is truly amazing. For a strong
binary electrolyte, ifΛi is the conductance of thei-th ionic species
with concentrationci (in moles per liter), the DHO law is given
by

whereΛi
0 is the conductance of thei-th ionic species in the limit

of infinite dilution. A andB are constants which originate from
electrophoretic and relaxation effects, respectively.B can be
expressed as the productB′w, whereB′ andA depend on the
temperature (T), dielectric constant (ε), and charges of the ions.1,2

A also depends on the viscosity of the medium. The factorw
contains the contribution from self-Brownian motion of the ion
under consideration and is equal to 2- x2 for a symmetric
binary electrolyte. The initial derivation of Debye and Huckel1

did not include the factorw; this term was later introduced by
Onsager.2

The original derivation of the DHO limiting law was based on
macroscopic hydrodynamics and irreversible thermodynamics.
Even after many years of study, precise microscopic origin of all
the terms of the DHO law is not transparent. Also, the DHO law
works only atVery lowconcentrations (c ∼ 10-3 M) and breaks
down completely even at moderate concentrations.3 Many attempts
have been made to improve upon the DHO law,4-5 the best known
and the most successful being the treatment of Friedman and co-
workers.5 However, the theory of Friedman and co-workers treats
the dynamics at a phenomenological level via the Smoluchowski
equation. No microscopic generalization of the DHO law to
concentrated solutions is available. Note that the latter has

remained as one of the most ill-understood problems of condensed
matter chemistry. One would, therefore, like to develop a theory
of ion conductance which is applicable to concentrated solutions
and which is based on the time correlation function formalism of
modern transport theory. Such a theory is presented in this paper.

Let us consider an ionic solution consisting of positive ions
(species 1) and negative ions (species 2) and the dipolar solvent.
Let us consider the diffusion of a single tagged ion of chargeqs

and diffusion coefficientDs. The diffusion of the tagged ion is in
general controlled by two distinct mechanisms, the first one
originates from the structural relaxation of the surrounding ions
and solvent molecules; this is totally microscopic in origin. The
second one is the hydrodynamic effect which arises from the
coupling of the ion velocity with the natural currents of the
system.6,7 Thus, one can writeDs as the sum of a microscopic
term and a hydrodynamic term as follows:Ds ) Ds,mic + Ds,hyd.
A formal derivation of the above decomposition has recently been
given in ref 6 by using mode coupling theory. Use of Einstein’s
relation between the diffusion coefficient and the friction (ús)
provides the following decomposition of the total friction on the
tagged ion: ús(c)-1 ) ús,mic(c)-1 + ús,hyd(c)-1. Clearly, ús,mic(c)
includes the effects of microscopic interactions of the tagged ion
with all the solvent molecules and the ions andús,hyd(c) includes
the effects of hydrodynamic interactions with the surrounding
solvent and ion currents.

The microscopic frictionús,mic(c) can be calculated by using
the Kirkwood equation which equates the friction to the force-
force time correlation function.8 This time-dependent force can
be obtained by using the time-dependent density functional theory
(TDDFT).9,10 Since the time-dependent force on the tagged ion
has contributions from surrounding solvent density and polariza-
tion fluctuations and also from ion atmosphere fluctuations, we
can decompose the total microscopic friction into a solvent
contribution ús,mic(c)0) which is assumed to be concentration
independent and a concentration dependent ion contributionδús,mic-
(c). To make connection with the DHO law, we treat the solvent
as a dielectric continuum and calculate the concentration depend-
ent ion contribution to the microscopic friction. Thus, the solvent
contribution is not calculated microscopically in the present work.
It determines the ion diffusion at infinite dilution whose value is
assumed to be known from experiments. Using TDDFT, we derive
the following expression of the microscopic electrolyte friction
δús,mic(c)

In the above equation, [Cs] is a (1 × 2) matrix with elements

xFicsi(k), i ) 1, 2, wherecsi(k) is the wavevector (k) dependent
direct correlation function between the tagged ion and an ion of
speciesi, andFi is the number density of thei-th species. [ús(k)]†

is the transpose of [Cs(k)]. Fs(k,t) is the self-dynamic structure
factor of the tagged ion, assumed here to be equal to exp(-Dsk2t),
as we are interested in the zero-frequency friction. Thus, eq 2
calls for a self-consistent solution. [G(k,t)] is the (2 × 2) van
Hove function matrix with elementsGij(k,t). The elements of the
van Hove function matrix can be calculated by using an extension† Indian Institute of Technology.
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0 - [A + BΛi
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ús,mic(c) )
kBT

3(2π)3∫0

∞
dt ∫-∞

∞
dk k2[Cs][G(k,t)][Cs]

† Fs(k,t)

(2)

4082 J. Am. Chem. Soc.1999,121,4082-4083

10.1021/ja983581p CCC: $18.00 © 1999 American Chemical Society
Published on Web 04/10/1999



of the molecular hydrodynamic theory discussed earlier.10 The
time integral can be carried out analytically to derive an expression
for δús,mic(c) in terms of an integral over the wavevectork.

The hydrodynamic contribution is due to the coupling of the
ion velocity to the relevant current modes of the solution. Mode
coupling theory directly provides an expression of the contribution
of the currents or flows of the system to the diffusion coefficient,
that is, inverse of the friction. Since the current modes of the
solution consist of both solvent and ion currents, the hydrody-
namic contribution to the diffusion (Ds,hyd) can be expressed as
the sum of a solvent contributionDs,hyd(c)0), which is again
assumed to be concentration independent, and a concentration
dependent ion contributionδDs,hyd(c). As before, the solvent
contributionDs,hyd(c)0) is not calculated in the present work. It
constitutes part of the ion diffusion at infnite dilution,11 which is
assumed to be known from experiments. The ion contribution to
the hydrodynamic term is the so-called electrophoretic effect
which is calculated in the present work. By using the basic ideas
of mode coupling theory and considering the coupling of the ion
velocity with the charge density and current modes of ion
atmosphere, a general (and somewhat complicated) expression
can be derived for the hydrodynamic (or the electrophoretic)
term12 which in the limit of equal sized ions provides the following
rather simple expression

whereF is the total ion density andN is the total number of ions
present in the solution.Gij

d(k,t) is the distinct van Hove function
between ionic speciesi andj, andCT(k,t) is the Fourier transform
of the transverse current time correlation function. The above
integral can be evaluated by making the so-called viscous
approximation for the decay ofCT(k,t).6 Since the relaxation of
the transverse current correlation function occurs much faster than
the decay of distinct van Hove functions, the distinct van Hove
functions in eq 3 can be replaced by the corresponding pair
correlation functions and the time integral of eq 3 can then be
evaluated analytically. We note that the long-range Coulombic
interactions among ions and the effects of screening enter naturally
in our formulation through the ion-ion correlation functions of
eqs 2 and 3.

Closed-form expressions for the wavevector integrals of both
eqs 2 and 3 can be obtained in the limit of very low concentration
where the exact asymptotic expressions for the ionic pair
correlation functions can be used. Equations 2 and 3 then lead to
the following novel and essentially exact nonlinear equation for
the conductance ofi-th species of a strong binary electrolyte at
low concentration

wherewi ) 2[1 - {0.5∑jΛi/(Λi + Λj)}1/2], qi is the charge of an
ion of speciesi, N0 is the Avogadro number,F is Faraday, and
kB is the Boltzmann constant. In deriving eq 4, we have used the
relation between the diffusion coefficient and the conductance
and also between the concentrationci and the number densityFi.
The above equation is new. It is to be solved self-consistently to
obtain the numerical values of the conductances of positive and

negative ions at low concentration. Thatwi goes over exactly to
the DHO value (2- x2) for a symmetric binary electrolyte can
be seen if one assumesΛi ) Λj. More importantly, in the same
limit eq 4 becomes identical with the DHO limiting law.1,2

Furthermore, the above equation reduces exactly to the expression
of Friedman and co-workers5 when one replacesΛi terms in the
right-hand side of the above equation byΛi

0. This is exact to the
order ofxci. Equation 4 is valid even when the mobilities of the
constituent ions of a binary electrolyte are different. This is almost
always the case for real electrolytes. The original DHO limiting
law does not reflect this asymmetry, which was later noticed by
Onsager.13

For high ion concentrations, eqs 2 and 3 are to be solved self-
consistently by evaluating the wavevector integrals numerically.
We have performed these calculations by taking aqueous KCl
and NaCl solutions as examples. The relevant pair correlation
functions can be obtained from the recent solutions of Attard
which are quite accurate even at high concentrations.14 The ionic
radii of K+, Na+, and Cl- and their respective conductances in
water at infinite dilution (Λi

0) are readily available in the
literature.15 Thus, the calculations can be carried out without any
major approximation and the results of the total conductanceΛ
(which is the sum of the individual conductances) are shown in
figures 1a and 1b for aqueous KCl and NaCl solutions, respec-
tively. The predictions of the DHO law and the experimental
results are also included for comparison. For both solutions, the
agreement between the present theory and the experimental results
is quite impressive given that we have employed a theoretical
approach which does not involve any adjustable parameter.

In the present theory the net mobility of an ion is determined
by a subtle interplay between microscopic relaxation and hydro-
dynamic contributions. Nevertheless, the basic physical picture
behind the DHO law remains valid. We have thus provided
microscopic expressions for the constantsA and B of the
Debye-Huckel-Onsager theory. The theoretical formulation
presented here can be extended to study several related problems,
as discussed elsewhere.12
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Figure 1. Concentration dependence of the ion conductance ofaqueous
(a) potassium chloride (KCl) and (b) sodium chloride (NaCl) solutions
at room temperature. The ratio of thetotal ion conductance at finite
concentration to that at infinite dilution,Λ/Λ0, is plotted as a function of
the square root of salt concentration,xc. The solid and the dashed
curves represent respectively the predictions of the present microscopic
theory and Debye-Huckel-Onsager (DHO) limiting law. The filled
squares denote the experimental results (taken from refs 3 and 5). The
concentration is expressed inmoles/liter.
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