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In this paper, we present a new theoretical formulation of ion
conductance in electrolyte solutions. This formulation not only
offers a microscopic derivation of the well-known Debye
Huckel-Onsager (DHO) limiting law? but it also allows aimple
interpretation of each term of the DHO law in terms of the time
correlation function of appropriate dynamical variables. It is

further shown that the theory can be successfully applied to higher
ion concentrations. The present theory provides a very powerful
new approach to the study of conductance in electrolyte solutions.

The DHO limiting law is considered to be one of the pillars of
physical chemistry, with implications in many other branches of
natural science. Given the simplicity of this law, its success,

without any adjustable parameter, is truly amazing. For a strong

binary electrolyte, ifA; is the conductance of theth ionic species
with concentratiort; (in moles per liter), the DHO law is given

by

Ae) = A = [A+ BATYG (D)
whereA? is the conductance of thieth ionic species in the limit
of infinite dilution. A andB are constants which originate from
electrophoretic and relaxation effects, respectivéy.can be
expressed as the produstw, whereB' and A depend on the
temperatureT), dielectric constante}, and charges of the ioAs.
A also depends on the viscosity of the medium. The faator
contains the contribution from self-Brownian motion of the ion
under consideration and is equal to-2+/2 for a symmetric
binary electrolyte. The initial derivation of Debye and Huékel
did not include the factow; this term was later introduced by
Onsagef.

The original derivation of the DHO limiting law was based on

macroscopic hydrodynamics and irreversible thermodynamics.
Even after many years of study, precise microscopic origin of all

the terms of the DHO law is not transparent. Also, the DHO law
works only atvery low concentrationsg(~ 1072 M) and breaks
down completely even at moderate concentratidviany attempts
have been made to improve upon the DHO fafthe best known

and the most successful being the treatment of Friedman and co
workers® However, the theory of Friedman and co-workers treats
the dynamics at a phenomenological level via the Smoluchowski

equation. No microscopic generalization of the DHO law to

concentrated solutions is available. Note that the latter has
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remained as one of the most ill-understood problems of condensed
matter chemistry. One would, therefore, like to develop a theory
of ion conductance which is applicable to concentrated solutions
and which is based on the time correlation function formalism of
modern transport theory. Such a theory is presented in this paper.

Let us consider an ionic solution consisting of positive ions
(species 1) and negative ions (species 2) and the dipolar solvent.
Let us consider the diffusion of a single tagged ion of chayge
and diffusion coefficienDs. The diffusion of the tagged ion is in
general controlled by two distinct mechanisms, the first one
originates from the structural relaxation of the surrounding ions
and solvent molecules; this is totally microscopic in origin. The
second one is the hydrodynamic effect which arises from the
coupling of the ion velocity with the natural currents of the
systenf’ Thus, one can writ®s as the sum of a microscopic
term and a hydrodynamic term as followBs = Dg mic + Ds nya
A formal derivation of the above decomposition has recently been
given in ref 6 by using mode coupling theory. Use of Einstein’s
relation between the diffusion coefficient and the frictidR) (
provides the following decomposition of the total friction on the
tagged ion: CS(C)_l = Cs,mi&c)_l + Cs,hyc(c)_l- Clearly, Cs,mi&C)
includes the effects of microscopic interactions of the tagged ion
with all the solvent molecules and the ions aR@,dc) includes
the effects of hydrodynamic interactions with the surrounding
solvent and ion currents.

The microscopic frictionZs midc) can be calculated by using
the Kirkwood equation which equates the friction to the force-
force time correlation functioh This time-dependent force can
be obtained by using the time-dependent density functional theory
(TDDFT).21° Since the time-dependent force on the tagged ion
has contributions from surrounding solvent density and polariza-
tion fluctuations and also from ion atmosphere fluctuations, we
can decompose the total microscopic friction into a solvent
contribution & midc=0) which is assumed to be concentration
independent and a concentration dependent ion contribdiign:

(c). To make connection with the DHO law, we treat the solvent
as a dielectric continuum and calculate the concentration depend-
ent ion contribution to the microscopic friction. Thus, the solvent
contribution is not calculated microscopically in the present work.
It determines the ion diffusion at infinite dilution whose value is
assumed to be known from experiments. Using TDDFT, we derive
the following expression of the microscopic electrolyte friction

6§s,mi0(c)

T S dt 7 dk KICJIGKDIICI" Fy(kit)
3(27)*° ® @)

In the above equationCf] is a (1 x 2) matrix with elements
J;icg(k), i =1, 2, wherecg(k) is the wavevectork) dependent
direct correlation function between the tagged ion and an ion of
species, andp; is the number density of tHeth species. (k)]

Cs,mic(c) =

is the transpose ofdy(K)]. F«(kt) is the self-dynamic structure
factor of the tagged ion, assumed here to be equal to-eyift),

as we are interested in the zero-frequency friction. Thus, eq 2
calls for a self-consistent solutionG(k,t)] is the (2 x 2) van
Hove function matrix with element;(k;t). The elements of the
van Hove function matrix can be calculated by using an extension
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ion velocity to the relevant current modes of the solution. Mode
coupling theory directly provides an expression of the contribution ~

of the molecular hydrodynamic theory discussed eallidie 10
time integral can be carried out analytically to derive an expression osk o= @
for 6&smidC) in terms of an integral over the wavevectar 2 L Y

The hydrodynamic contribution is due to the coupling of the S o8 \\

of the currents or flows of the system to the diffusion coefficient, 02— —t— 1R
that is, inverse of the friction. Since the current modes of the o ()
solution consist of both solvent and ion currents, the hydrody- 508 N0

namic contribution to the diffusionD nygd can be expressed as < I N .

the sum of a solvent contributioBsn,{c=0), which is again < % ™~

assumed to be concentration independent, and a concentration 04 N

dependent ion contributiodDspydC). As before, the solvent o2l 1 N 1
contributionDs ,,{c=0) is not calculated in the present work. It ’ 04 08
constitutes part of the ion diffusion at infnite dilutidhwhich is <
assumed to be known from experiments. The ion contribution to Figure 1. Concentration dependence of the ion conductan@goéous

the hydrodynamic term is the so-called electrophoretic effect (a) potassium chloride (KCI) and (b) sodium chloride (NaCl) solutions
which is calculated in the present work. By using the basic ideas at room temperature. The ratio of tiietal ion conductance at finite

of mode coupling theory and considering the coupling of the ion concentration to that at infinite dilutiom\/Ao, is plotted as a function of
velocity with the charge density and current modes of ion the square root of salt concentratiowc. The solid and the dashed
atmosphere, a general (and somewhat complicated) expressiomurves represent respectively the predictions of the present microscopic
can be derived for the hydrodynamic (or the electrophoretic) theory and DebyeHuckel-Onsager (DHO) limiting law. The filled

term2which in the limit of equal sized ions provides the following ~ squares denote the experimental results (taken from refs 3 and 5). The
rather simple expression concentration is expressed fmoles/liter

negative ions at low concentration. Thatgoes over exactly to

the DHO value (2— x/i) for a symmetric binary electrolyte can

be seen if one assumés = A;. More importantly, in the same
limit eq 4 becomes identical with the DHO limiting lak¥.
Furthermore, the above equation reduces exactly to the expression
of Friedman and co-workersvhen one replace4; terms in the

0Dy ) = Sn%pN [ dt [ dk Kp,Gly(kt) —
.Gl kDICT(KD) (3)

wherep is the total ion density anM is the total number of ions
present in the squtiorij'(k,t) is the distinct van Hove function  right-hand side of the above equationlhf/. This is exact to the
between ionic speciésandj, andCT(k,t) is the Fourier transform  order of\/a. Equation 4 is valid even when the mobilities of the
of the transverse current time correlation function. The above constituent ions of a binary electrolyte are different. This is almost
integral can be evaluated by making the so-called viscous always the case for real electrolytes. The original DHO limiting
approximation for the decay @T(kt).? Since the relaxation of  law does not reflect this asymmetry, which was later noticed by
the transverse current correlation function occurs much faster thanOnsage#3
the decay of distinct van Hove functions, the distinct van Hove  For high ion concentrations, eqs 2 and 3 are to be solved self-
functions in eq 3 can be replaced by the corresponding pair consistently by evaluating the wavevector integrals numerically.
correlation functions and the time integral of eq 3 can then be We have performed these calculations by taking aqueous KCI
evaluated analytically. We note that the long-range Coulombic and NaCl solutions as examples. The relevant pair correlation
interactions among ions and the effects of screening enter naturallyfunctions can be obtained from the recent solutions of Attard
in our formulation through the iorion correlation functions of  which are quite accurate even at high concentratibiisie ionic
egs 2 and 3. radii of K*, Na*, and CI and their respective conductances in
Closed-form expressions for the wavevector integrals of both \yater at infinite dilution (%) are readily available in the
egs 2 and 3 can be obtained in the limit of very low concentration |iterature!s Thus, the calculations can be carried out without any
where the exact asymptotic expressions for the ionic pair major approximation and the results of the total conductakce
correlation functions can be used. Equations 2 and 3 then lead to(which is the sum of the individual conductances) are shown in
the following novel and essentially exact nonlinear equation for figures 1a and 1b for aqueous KCI and NaCl solutions, respec-
the conductance dfth species of a strong binary electrolyte at  tjyely. The predictions of the DHO law and the experimental
low concentration results are also included for comparison. For both solutions, the
agreement between the present theory and the experimental results

0 4/271N0qi2F is quite impre_zssive given f[hat we have e_zmployed a theoretical
Ai(Q) = A o o —ap + approach which does not involve any adjustable parameter.
31 (100CksT) In the present theory the net mobility of an ion is determined

«/WQ-ZWW by a subtle interplay between microscopic relaxation and hydro-
N A0 ﬁ (4) dynamic contributions. Nevertheless, the basic physical picture
3v1000€kgT)¥2 [V behind the DHO law remains valid. We have thus provided

microscopic expressions for the constaws and B of the
wherew, = 2[1 — {0.55;A/(A; + A}, g is the charge of an Debye-Huckel-Onsager theory. The theoretical formulation
ion of species, Ny is thJe AvogadnJ) numbef is Faraday, and presented here can be extended to study several related problems,
kg is the Boltzmann constant. In deriving eq 4, we have used the 8S discussed elsewhéfe.
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